

Creating online experiments in <Frinex>

User Manual for Research Assistants

Max Planck Institute for Psycholinguistics, Nijmegen

Version:

June 2024

Contact:

Thijs Rinsma

thijs.rinsma@mpi.nl

Room 109

mailto:thijs.rinsma@mpi.nl

To Contents

2

Contents

Acknowledgements .. 4

PART I: FRINEX BASICS ... 5

1 | Introduction .. 5

About Frinex .. 5

Timing accuracy ... 5

Goal of this manual.. 5

2 | Frinex workflow .. 6

Using GitHub Desktop to upload experiments .. 6

A note on collaboration ... 7

3 | Exploring the XML experiment definition .. 8

XML basics... 8

Basic structure of a Frinex XML file .. 9

An example experiment in action..11

Exercise 1: fix the XML file ...11

Exercise 2: change the experiment ..13

Clearing your browser’s cache ..14

4 | Defining a simple experiment in XML ...15

The <experiment> element ...15

User input with buttons ..16

User input with text fields ...17

Presenting pictures and sounds ..17

Exercise 3: trial structure ..19

 Basic formatting ..19

Regions ...20

Stimulus randomization ..20

Stimulus selection...20

Exercise 4: formatting and stimulus control ..21

5 | Let the experiment begin! ..22

Publishing an experiment ...22

Accessing the data ..22

PART II: ADVANCED TOPICS ..24

6 | Recording audio ...24

Playing back recorded audio ...25

7 | Formatting and layout ..26

More layout elements ..26

To Contents

3

CSS styling ..26

In-line CSS ...27

8 | Advanced Control ...28

Tokens..28

Randomization by Frinex ..28

Using multiple stimulus lists ..29

Triggering a block of elements ..30

Setting metadata field values ..30

Using conditionals ..31

9 | Creating questionnaires ...32

Using <withStimuli> ..32

Stimulus rating buttons ..32

Example ..33

Tables and withStimuli ..35

Appendix A | Regular expressions ..36

Appendix B | Tokens ..37

Elements that accept tokens ...38

Token methods...38

Appendix C | Troubleshooting..39

Error messages on the Frinex build page ...39

Unexpected behavior on the Frinex build page ...40

To Contents

4

Acknowledgements

This manual would not have been possible without the help of several people. Thanks is due to Peter

Withers for his expert advice on Frinex and the Git workflow, to Maarten van den Heuvel for helping

establishing the scope of this manual and for proof-reading several chapters, to Dennis Joosen for

reading and using earlier versions of this manual and helping to identify several omissions, and to Julia

Misersky for making available one of her experiments and stimuli as an example experiment.

To Contents

5

PART I: FRINEX BASICS

1 | Introduction

About Frinex

Frinex stands for Framework for Interactive Experiments and is developed at the Max Planck Institute

for Psycholinguistics in Nijmegen, The Netherlands. It allows researchers in experimental psychology,

language sciences and cognitive sciences to create online experiments. Frinex can be used to create

experiments such as sentence rating and picture naming tasks, as well as more complex setups.

Experiments can be made to run in a web browser, on desktop as an Electron app, as an Android or iOS

app on mobile and tablets, and as a field experiment (fieldkit).

Timing accuracy

As an online experiment system, Frinex is suitable for experiments that do not have strict timing

requirements for stimulus presentation and responses. Although we strive to make Frinex reasonably

time accurate for an online system, we cannot guarantee accurate timing. This is because the

performance of online experiments depends on things like participants’ internet connection, their

operating system and the capabilities of their machine (desktop computer, laptop, mobile device) and

their screen. In order to judge whether the timing of stimuli is accurate (enough) for your experiment, it

should be measured using external equipment (for example, a high-speed camera) on hardware that

participants can be expected to use.

Goal of this manual

The present manual is aimed at research assistants. It helps to have a basic understanding of

programming and/or scripting, but this is not strictly necessary. The manual covers the use of GitHub

Desktop to manage and upload files, explains how to create a both simple and more complex

experiments, from the XML definitions to accessing the generated research data.

Keep in mind that experiments can be run using three main versions of Frinex: stable, beta and alpha.

Stable is the most well tested (then beta, then alpha). This manual covers the stable version of Frinex as

of the time of publication.

Throughout the manual there are several exercises to help you hone your Frinex skills. After having read

the manual and completed the exercises, you should be able to use the existing Frinex experiments and

the Frinex XML Usage page to discover how to create more complex experiments.

Good luck!

To Contents

6

2 | Frinex workflow

In order to create experiments in Frinex you will need a text editor to write XML definitions and a Git

client to upload your work. We recommend using an editor that can highlight code, such as Notepad++

or VSCodium1. You also need a Git client to upload your work to the Frinex server. As for now, we will

explain basic use of Github Desktop, which implements Git in an easy to use graphical interface. You can

download it at https://desktop.github.com/

Using GitHub Desktop to upload experiments

The experiments on the Frinex server are organized using Git, which is a widely used version control

system (follow the link for more information on version control and Git specifically). It turns a directory

on your computer into a so-called ‘Git repository’ and then automatically tracks changes that are made

to files in that directory (the added hidden folder named ‘.git’ is a sign of this). For each Frinex

experiment, a repository should contain at least an XML experiment file and a corresponding folder of

the same name (without ‘.xml’) for the stimuli.

Creating new experiments and changing existing ones means adding the XML files and changing them;

then using Git to communicate this to the repository on the Frinex server. The Frinex server has several

repositories for Frinex experiment files, but for now we will be working in our personal repository. Let’s

go ahead and set up the example experiment that we will be working on in the coming chapter.

Step 1) We first need to create our personal repository:

• Go to http://frinexbuild.mpi.nl/docs/git_setup.html and press ‘Calculate Repository URL’. You

will be prompted for a user name (full MPI email address) and password.

Note down the URL you are given.

• In Github Desktop, go to File > Options > Git, fill in your name and email address and click Save.

• Go to File > Clone repository > URL and fill in the URL that was calculated for you.

At ‘Local path’, fill in the directory on your computer where you want the repository to be

cloned to. You will be prompted again for the user name and

password.

• Click ‘Clone’

Step 2) Now that we have set up our repository, we can start adding files

locally. Let’s create a new file called “xml_example_[your name in lower

case].xml” inside your local repository. If you go back to Github Desktop,

you can see in the left pane that Git has detected the addition of the new

file (indicated with a green ‘plus’ icon).

Although we have added a file, the state of our repository from the

perspective of Git has not changed; that is because we still need to

commit this addition. If you are certain of the change, Write a short

description of the change in the provided box and press ‘Commit to

master’.

1 We recommend VSCodium in combination with the XML Language Support by Red Hat extension. This extension
automatically indicates any errors or inconsistencies in the XML.

https://desktop.github.com/
https://www.git-scm.com/book/en/v2/Getting-Started-About-Version-Control
http://frinexbuild.mpi.nl/docs/git_setup.html

To Contents

7

Step 3) Once the addition of the file is committed, you want to copy the repository in its new state to

the server. This is done by pushing, using the button ‘Push origin’ at the top that appears after

committing. Be aware that this updates the server repository to be identical to the local repository (i.e.

all files in your repository are copied, not just the one you have updated!). Make sure the message reads

‘Last fetched just now’ before you push:

‘Last fetched just now’ means that your local repository has been updated with information from the

server repository a couple of seconds ago. Therefore, you can safely push, because the only difference

between them is the changes you just committed; this is especially important when you work together

with others in the same repository (see below note).

After pushing, the new experiment should show up on http://frinexbuild.mpi.nl/ (you need to be

connected to MPI network for this to work). This page lists all experiments currently residing on the

Frinex server. Order the list by clicking the ‘last update’ link to bring your newly uploaded experiment to

the top. In the ‘validation’ column, it should say: xml failed This is because you have just uploaded an

XML file that Frinex does not know what to do with, as it is an empty file.

After this, working on files and uploading them is a four step process:

• Do a Pull (Repository > Pull)

• Change, add or delete one or more files in your repository

• Commit

• Push

If you want to know more about Git, visit https://www.git-scm.com/

A note on collaboration

When working in the same repository with multiple people, or when working by yourself from different

computers, it is especially important to Pull the changes from the remote before you do any work. Say

you wait 30 minutes after Pulling and then do a Push. This will replace the information on the server

repository with your now-30-minutes out-of-date local repository. Before this Push, someone else may

have pushed new changes as well, but this information is now overwritten by your Push. This means the

changes they made to their work will be gone from the server repository. When subsequently they

decide to Pull (not knowing it no longer contains their changes), they will lose the work they did in their

local repository.

That is why it is very important to communicate with your collaborators when you intend to push

changes to the remote.

http://frinexbuild.mpi.nl/#4_d
https://www.git-scm.com/

To Contents

8

3 | Exploring the XML experiment definition

This chapter is meant to be a quick overview of the structure of an XML experiment definition and use

of the Frinex build server. More in-depth information about XML files will be given in chapter 4.

XML basics

Online experiments in Frinex are defined in XML, which stands for “eXtensible Markup Language”.

Similar to HTML, XML defines information by means of tags. Unlike HTML tags, XML tags can define any

type of information, for example a collection of papers, the inventory of a shop or the structure of an

online experiment. See below mock XML file:

The first line (or something very similar) is necessary in any XML file to be recognized as such.

As you can see, elements are defined by an opening statement and a closing statement. The forward

slash before the element name makes it a closing statement. Some elements don’t need a separate

closing statement and can be closed by putting a forward slash behind the element name.

Elements can be nested inside other elements. The nested element is then called a child element and

the element it is nested in, a parent element. Take note that a nested element must be closed within its

parent element. In principle there is no limit to how far the nesting goes – there can be elements nested

in elements, nested in elements, etc.

Elements can have attributes, which are additional statements behind the element name that inform

the way the element functions or that set certain parameters (lastElement in the example). The order in

which the attributes appear does not matter. But mind the type of quotes you use around the value:

these must be straight double quotes ("). Do not use “ , ” , ` or ‘ , as these may not be processed

correctly.

Also, note the indentation of the elements nested in <element>. Strictly this is not necessary, but it

makes it easier to see the structure of the XML definition.

Finally, you can use <!— and --> to add comments or to (temporarily) deactivate elements. Make sure

to avoid double dashes (--) in between a start and end flag. Examples:

<!-- single line comment -->

<!--

multi line

comment

-->

<!-- this is -- not -– a correct comment -->

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<element>

 <nested_element>

 </nested_element>

 <self_closing_element/>

 <element_with_attribute lastElement="yes"/>

</element>

To Contents

9

Basic structure of a Frinex XML file

Every experiment has stimuli to present, a temporal structure and lay-out for each trial, as well as data

being generated by participants as well as internally. Defining what stimuli to present and defining how

to present them are done separately in XML. The below schematic shows the basic elements that make

up an experiment definition. The <deployment>, <scss>, <metadata> and <stimuli> elements have fixed

places with respect to each other.

Figure 1: Order of child elements in main <experiment> element and what they are for

The elements we are concerned with at the moment are <metadata>, <presenter> and <stimuli>.

The <metadata> element is where you define data fields that can contain various sorts of information.

Each field is created by using the <field> element. Most experiments need fields like this, for example

for demographics information that you want to collect or for control switches in complex setups.

Every presenter needs two attributes: self and type. The name (self) of the presenter uniquely identifies

the presenter, which allows you to refer to it from other presenters. The presenter’s type determines for

what purposes the presenter is best suited. A “menu” presenter is used for things like the welcome

screen and informed consent screen, “stimulus” presenters allow you to define the trial structures in

your experiment and “transmission” presenters are used to send the data collected during the

experiment to the Frinex database.

Finally, the <stimuli> element contains stimulus definitions in the form of <stimulus> elements, usually

one for each trial. A stimulus presenter uses the stimulus definitions from <stimuli> to know what

stimuli to present from one trial to the next.

<experiment> start of the XML definition

 <deployment> tells Frinex how to deploy the experiment.

 <scss> allows you to define CSS formatting styles in your experiment (optional)

 </scss>

 <metadata> allows you to define metadata fields

<presenter> the central building blocks of your experiment. Use as many of them as you

need to create the screen contents and temporal structure (see Figure 2)

 <stimuli> here you define the stimuli to be presented in your experiment.

</experiment> end of the XML definition

To Contents

10

Below is a summary in schematic form:

<experiment ...>

<deployment .../>

 <scss>

 </scss>

 <metadata>

 <field .../>

 <field .../>

 </metadata>

 <presenter self="welcome" type="menu">

 <plainText featureText=”Welcome!”/>

 </presenter>

 <presenter self="demographics" type="metadata">

 <metadataField .../>

 <metadataField .../>

 </presenter>

 <presenter self="mainTrials" type= "stimulus">

 <loadStimulus>

 ...

 </loadStimulus>

 </presenter>

 <presenter self= "admin" type= "transmission”>

 <sendMetadata>

 ...

 </sendMetadata>

 </presenter>

 <stimuli>

 <stimulus .../>

 <stimulus .../>

 <stimulus .../>

 ...

 </stimuli>

</experiment>

Define metadata fields

Present input boxes

Present stimuli

Send data

Define stimuli

To Contents

11

An example experiment in action

The Frinex server contains experiments including their source files. As mentioned before, these

experiments are listed on the Frinex build page at http://frinexbuild.mpi.nl. For now, we are concerned

with four of the columns on the page: the experiment name (“experiment”), the date and time of last

update (“last update”), links to XML files (“validation”) and the links to the staging version of the

experiment (“staging web”).

Navigate to the experiment name “xml_example”. The list can be ordered by name by clicking the

experiment link at the top of the column. The “validation” column for xml_example says xml failed,

which means something is wrong with the XML file and the experiment has not been built. Click the

failed link to see the error message associated with this. To see the contents of the XML file, click on the

xml link and on the next page, right-click in the page and select ‘View page source’. Copy all of the text

that appears and paste it into your preferred text editor (see Chapter 2).

Exercise 1: fix the XML file

Once you have a working XML file, the ‘validation’ column will show xml passed and the ‘staging web’

column will show building. When it is ready, the ‘staging web’ column will show four links. Click the

browse link to go to the experiment. You will first see the screen below.

Click on “Begin Experiment Evaluation” to start the experiment.

Use your knowledge of XML and Frinex to build your personal “xml_example” on the Frinex

server. To do this, paste the XML code into an editor and save it as “xml_example_[your

name].xml”. Make the necessary fixes. Next, upload this file to the Frinex server using Git.

TIP: on the build page you can order the experiments by upload date by clicking the ‘last

update’ header.

TIP 2: use the XML extension for VSCodium / VSCode to make your life easier.

http://frinexbuild.mpi.nl/

To Contents

12

As you have seen, this example experiment displays only text and does not require any input from the

participant during the trials. We will get to that in the next chapter. First, let’s relate what you see in the

experiment to the XML structure.

The first screen you see is the welcome screen, which corresponds to the first presenter in the XML file,

called “welcomeScreen”. The welcome message itself is produced by <plainText>. There is also a “Next”

button spanning the width of the screen, created by the <targetButton> element. When clicked, Frinex

goes to the presenter indicated in the target attribute, which needs to correspond to the self attribute

of the target presenter ("demographics" in this case).

The second screen shows you two boxes for text input which correspond to the <metadataField>

elements, as well as a button corresponding to <saveMetadataButton>. The input boxes are coupled to

the <field> elements in <metadata>, each of which needs the following attributes:

postName: The name of the data field

registrationField: The text displayed above the input box

controlledRegex: The allowed values for this data field in the form of a regular expression (‘regex’)

controlledMessage: The message displayed if the value deviates from the allowed values

The button will check whether the fields and their values in <metadata> could be successfully saved and

they are also sent, because the sendData attribute is set to "true". If so, Frinex will trigger

<gotoNextPresenter> which takes the experiment to the presenter specified in the attribute next of the

current presenter.

Clicking the ‘Start experiment’ button takes us to the part where the trials are presented to the

participant. This is done using a presenter of type ‘stimulus’, which has the following basic structure:

<presenter type="stimulus">

 <loadStimulus>

 <hasMoreStimulus> Triggers elements for each stimulus in succession.

 </hasMoreStimulus>

 <endOfStimulus> Triggers elements once after the last trial has finished.

 </endOfStimulus>

 <randomGrouping> Provides additional control over stimulus selection.

 </randomGrouping>

 <stimuli> Contains tags that determine which stimuli are selected for

 </stimuli> presentation. Not to be confused with the main <stimuli>

element within <experiment>

 </loadStimulus>

</presenter>

To Contents

13

The presentation of each stimulus depends on what you put in <hasMoreStimulus>. First, the screen is

cleared with <clearPage/> to clear away the previous stimulus. In the above example, some text is

presented using <stimulusLabel>. The text to be displayed is taken from the label attribute of a

<stimulus> element.

We want the label to be bigger and to appear centered on the screen, so we apply the CSS style called

“labelStyle”, which is defined in <scss>. As Frinex does not automatically continue to the next trial, we

tell it explicitly with <nextStimulus>. But it must first wait for a certain duration, otherwise the stimuli

will be presented too rapidly. To do that, we embed <nextStimulus> within a <pause> element, which

defines the length of the pause in the msToNext attribute2.

In our XML file, <endOfStimulus> contains the element <gotoNextPresenter>. This means that, after all

the stimuli are presented, Frinex will go to the presenter with name ‘admin’ (as defined in the next

attribute of the stimulus presenter). Alternatively, you could use <gotoPresenter> and use its target

attribute to set the target presenter manually.

The last presenter in the XML file does two things: it displays the message “this is the end of the

experiment” and it sends all the data to the Frinex server. The <onSuccess> and <onError> elements in

<sendMetadata> are triggered either when Frinex successfully sent the data, or when it failed to do so,

respectively.

Exercise 2: change the experiment

2 The value of msToNext is in milliseconds, but this does not mean it is accurate on the millisecond level.

• The stimuli appear to be presented in the wrong order; see if you can fix this.

• Increase the speed of stimulus presentation; it is going rather slow.

• Change the experiment so that participants are asked to fill in information

after the trials are done instead of before.

• Add a thank you message at the end of the experiment and make it stand out.

<hasMoreStimulus>

 <clearPage/>

 <stimulusLabel styleName="labelStyle"/>

 <pause msToNext="1500">

 <nextStimulus repeatIncorrect="false"/>

 </pause>

 </hasMoreStimulus>

To Contents

14

Clearing your browser’s cache

When working on an XML file and going back and forth between it and your experiment, your browser

may hold on to the data of a previous version of the experiment. This can prevent you from seeing the

changes you applied to your XML in the experiment. To make sure your browser uses the newest data,

you can do two things:

• Add a debug presenter just before the main <stimuli> element in the XML file:

This presenter allows you to clear application data; just add “/?debug” to the URL of the

experiment. So for example, frinexstaging.mpi.nl/my_experiment/?debug. This will take you to a

screen with a button ‘Erase Stored Data’. Clicking this will erase the stored data of this

experiment and return you to frinexstaging.mpi.nl/my_experiment.

• Sometimes doing this is not enough; in that case you can also force refresh the webpage (also

called ‘bypassing the cache’). See https://en.wikipedia.org/wiki/Wikipedia:Bypass_your_cache

for how to do this on different OS’s and browsers.

<presenter self="about" menuLabel="debug" type="debug" title="debug">

 <stimuliValidation />

 <versionData />

 <eraseLocalStorageButton />

</presenter>

https://en.wikipedia.org/wiki/Wikipedia:Bypass_your_cache

To Contents

15

4 | Defining a simple experiment in XML

It is time for a more thorough look at the definition of a complete experiment. This includes some basic

settings in the XML file, user input, trial types, picture and sound presentation, as well as some useful

techniques for formatting screen contents.

We will be using the experiment called “picture_naming_example”, which you can find on the Frinex

build server. Click the “xml” link, copy the contents to a new XML file of your own and rename it

“picture_naming_example_[your name in lower case]”. Then, download the files used in the experiment

from the online experiments page on Maxintra

From time to time we will refer to the Frinex XML Usage page. This page lists all XML elements and their

attributes and provides a description for many (but not all) of them. Use your browser’s search function

to look up any element or attribute you want to know more about.

The <experiment> element

Before we dive into the detail, let’s consider few important attributes in the main <experiment>:

• xmlns:xsi and xsi:noNamespaceSchemaLocation: these are needed to tell Frinex how to

interpret the XML and its elements (although they do not show up on the XML Usage page). You

don’t need to change anything to the first one. The second one sets the version of Frinex to use

and should normally be set to “stable.xsd”. As the name implies, stable is the version that has

been tested for longest and is considered to be the most robust. Beta comes next, which you

might use if you need functionality that is not yet available in the stable version. The alpha

version is not recommended, as it contains features that are not well tested.

• appNameDisplay: this refers to the name displayed in the browser.

• If you want to adjust the text and background colors used in the experiment, the below
attributes allow you to do this. The values represent the RGB color components and can be
inserted into any drawing / sketching app to test the color. The background color determines
which of the primary and complement colors are used. Below values are the default values:

backgroundColour="#FFFFFF"
primaryColour0="#628D8D"
primaryColour1="#385E5E"
primaryColour2="#4A7777"

primaryColour3="#96ADAD"
primaryColour4="#D5D8D8"

complementColour0="#EAC3A3"
complementColour1="#9D7B5E"
complementColour2="#C69E7C"
complementColour3="#FFEDDE"
complementColour4="#FFFDFB"

https://maxintra.mpi.nl/research/exp/expfac/lab-specifications/online-experiments
http://frinexbuild.mpi.nl/stable.html

To Contents

16

User input with buttons

In Frinex you can create several types of buttons for participants to use. Below we shortly show you how

to implement them in your XML file, how they appear in the browser and explain what to keep in mind

when using them.

<actionButton featureText=”next picture”>

<ratingButton ratingLabels="none,a few,several,many" ratingLabelLeft="left" ratingLabelRight="right"/>

<ratingRadioButton ratingLabels="1,2,3,4,5"/>

<ratingCheckBox ratingLabels="drama,action,comedy,sci-fi,fantasy"/>

The actionButton is the basic button. Whatever elements are nested within this element, will be

triggered once the button is pressed. For example:

In the above example, when the button is pressed, Frinex waits 1 second and then goes to the next

stimulus. Suppose you want no delay, then for convenience you could use <nextStimulusButton/>,

which does the same as <actionButton> and <nextStimulus> combined. Also, action buttons can detect

keystrokes by adding the attribute hotkey (see the XML usage page for allowed hotKey values). An

alternative for this button is stimulusButton, which works in the same way as actionButton, but in

addition it automatically logs button presses on the Frinex server.

The rating buttons and their different forms give you one or more buttons in a row. The <ratingButton>

and <radioButton> allow for only one choice among the options, while the <ratingCheckBox> allows for

multiple choices. The ratingLabels attribute is mandatory.

Another useful button is the redirectToUrl button. This places a button that takes the participant to the

website specified in the ‘src’ attribute. This is useful for taking participants to an additional survey or to

a site such as Prolific to confirm their participation when the experiment has ended.

<actionButton featureText="next picture">

 <pause msToNext="1000">

 <nextStimulus repeatIncorrect="false"/>

 </pause>

 </actionButton>

http://frinexbuild.mpi.nl/frinex.html#actionButtonType

To Contents

17

User input with text fields

Besides buttons, there are text fields for participants to enter text. We have mentioned

<metadataField>, which saves the entered text in a data field predefined in <metadata>. or you can use

<stimulusFreeText>, which saves the text as data tied to the current stimulus:

<stimulusFreeText featureText="Use at least 3 characters" validationRegex=".{3,}" inputErrorMessage=""/>

The displayed text box will accept only a single line of text by default; for multi-line input, make sure the

value for validationRegex is “[\\s\\S]*” (zero or more characters) or “[\\s\\S]{1,}” (one or more

characters).

Whatever is written into the text box will count as input as soon as participants go to the next trial. Note

that the attributes featureText, validationRegex and inputErrorMessage are mandatory. Contrary to

what you might expect, here featureText is the message that is displayed when the input does not

conform to the regex specified in validationRegex. The value in inputErrorMessage will be shown if

characters are used that are not in allowedCharCodes (inputErrorMessage should be present, but it is

okay if no value is assigned to it).

For more details on stimulusFreeText, see the XML Reference.

Presenting pictures and sounds

In order to present picture and sound stimuli, you need to upload the files to the experiment folder on

the server. Simply add them to the experiment folder in your local repository and push this change, just

as you would push any change to your XML file. For audio files you can use three formats: OGG, MP3

and WAV. Only use WAV as a last resort, as this is not optimized for the web.

Images and sounds can be presented by using the elements <stimulusImage> and <stimulusAudio>

within a presenter of type stimulus.

<stimulusImage> has two mandatory child elements: <mediaLoaded> and <mediaLoadFailed>. If the

image is succesfully loaded, any elements within <mediaLoaded> will be triggered. If not, any elements

within <mediaLoadFailed> will be triggered. There is also a mandatory attribute msToNext, which is the

time the image is visible for.

<stimulusImage msToNext="1000">

 <mediaLoaded>

 </mediaLoaded>

 <mediaLoadFailed>

 </mediaLoadFailed>

 </stimulusImage>

http://frinexbuild.mpi.nl/stable.html#stimulusFreeTextType

To Contents

18

If you want to present an image that is not defined in the main <stimuli> element, you can use 

To Contents

19

Exercise 3: trial structure

Basic formatting

In the picture naming experiment, participants now see a picture, can respond with text input and go on

to the next picture until all trials are done. But the screen contents are crammed at the top, because we

haven’t told Frinex how to position the contents.

Basically, there are two ways to do this. The first method is to use built-in formatting elements:

• <centrePage/>

This element horizontally centres all screen contents.

• <addPadding/>

This adds an empty line, useful for separating items vertically. As long as you have a simple

screen layout for your trials, you can separate the text and image elements using only

<addPadding> elements; just add as many as you need.

The second way to lay out the screen contents is by using CSS styles. This way you can control things like

position, color and size of any element that has an attribute styleName. You can set the value of this

attribute to the name built-in styles (see below) or to a custom style you defined yourself. The latter

allows for more control but requires knowledge of CSS (see chapter 7).

For now, here are some styles that are built into Frinex that you can use right away:

• centeredVerticalHorizontal centers the element in the middle of the screen, both vertically and

horizontally. The element will stay in the centre even when scrolling.

• footerCenteredHorizontal centers the element only horizontally and puts it at the bottom of

the screen.

• minimalWidth horizontally condenses the item to no more than 500 pixels.

• fullScreenWidth fits the item horizontally to 100% of the window’s width.

• Each image currently stays on the screen during the next trial, forcing the next

picture to appear below it. Make sure to first clear the picture from the previous trial

from the screen before presenting a new one.

• One image cannot be loaded; make sure it can be.

• The current experiment shows a couple of pictures, but the repository contains

twenty of them. Make sure all pictures are presented.

• Based on the following requirements, create the trial structure for this experiment.

o Present a fixation cross for 1000 ms (don’t worry about it not being centered

in the middle of the screen)

o Present picture for 500 ms

o Then show an input box with the text “The picture showed...” above it. Make

sure the input box requires at least 3 characters and asks for them if not

given. Also add a button for going to the next trial below the input box,

reading “next picture”.

To Contents

20

Regions

If you use a style on an element, the style is applied only to that element. For example, an image, an

input box and some text with the style ‘centeredVerticalHorizontal’ will all have that style applied

separately. The consequence is that they will all be put in the centre of the screen on top of each other.

This can be avoided by putting the elements in a region and applying a style to the region, which will

centre the elements as a group:

<regionAppend regionId="stimulusRegion" styleName="centeredVerticalHorizontal">

 <stimulusImage>

 <stimulusFreeText>

 <htmlText>

</regionAppend>

Stimulus randomization

By default Frinex will present the stimuli defined in <stimuli> from the top down. To randomize stimulus

presentation, set the randomise attribute of <loadStimulus> to “true”. After randomization, there may

be adjacent stimuli that are the same in some way. You can then use the adjacencyThreshold attribute

to set the window of disallowed proximity; a value higher than 0 will modify the order in case a stimulus

is surrounded by matching stimuli (default is 3). Whether stimuli match is determined by the values of

the <stimulus> attributes image, video, audio or label, whichever comes first in the <stimulus> element.

See the XML Usage Page for more details on randomization.

Stimulus selection

All stimuli will be used for presentation, as long as you do not discriminate between them. Many

experiments of course do make a distinction, for example between stimuli in different experimental

conditions. To do this in XML, stimuli belonging in a group need to be tagged as such both in the

presenter and in the <stimulus> elements. In the presenter, put the tag name in the <stimuli> element

of <loadStimulus>. In the <stimulus> element, put the tag name in the tags attribute:

<presenter>

 <loadStimulus>

 <hasMoreStimulus/>

 <endOfStimulus/>

 <randomGrouping/>

 <stimuli>

 <tag>practice</tag>

 </stimuli>

 </loadStimulus>

 </presenter>

 ...

 <stimuli>

 <stimulus identifier="trial" imagePath="plant.png" tags="practice"/>

 </stimuli>

http://frinexbuild.mpi.nl/frinex.html#loadStimulusType

To Contents

21

You can also randomly assign participants to different stimulus lists / groups. To do this, let Frinex

randomly select a stimulus tag, for example “group1” or “group2”, by using the <randomGrouping>

element in <loadStimulus>.

For example:

Exercise 4: formatting and stimulus control

<presenter type="stimulus">

 <loadStimulus>

 <hasMoreStimulus>

 ...

 <randomGrouping>

 <tag>group1</tag>

 <tag>group2</tag>

 <tag>group3</tag>

 </randomGrouping>

 <hasMoreStimulus>

 </loadStimulus>

 </presenter>

 <stimuli>

 <stimulus identifier="g1_trial1" tag="group1"/>

 <stimulus identifier="g1_trial2" tag="group1"/>

 <stimulus identifier="g2_trial1" tag="group2"/>

 <stimulus identifier="g2_trial2" tag="group2"/>

 ...

 </stimuli>

• Center the image, the fixation cross, the message “The picture

showed”, the input box and button in the middle of the screen. Make

sure the message is displayed above the input box.

• Include practice trials in the experiment; make sure only practice

trials are selected for the ‘practice’ block and only main trials are

selected for the ‘main’ block. Include a message after the practice

trials informing that the experiment is about to begin.

• Randomize the presentation of the main trials, but not the practice

trials.

• Make Frinex randomly select either pictures of things you can eat or

pictures of things you cannot eat.

To Contents

22

5 | Let the experiment begin!

Publishing an experiment

The example experiments you have made so far were built on the staging server. This is the part of the

server where experiments are developed and tested before they are finally published.

If you have thoroughly tested an experiment and want to run it with participants, you should publish it

on the production server. To do this, change the state attribute of the <deployment> element from

"staging" to "production". When you re-upload the experiment, it will go through the normal build

process and will continue to build the production version after it has finished building the staging

version.

When you no longer need to use your experiment, you can undeploy it. To do this, change the state

attribute to "undeploy", then re-upload the experiment. Also, if you wish to make a last minute change

to an experiment that is already published, first undeploy it, then make the necessary changes and

finally redeploy it by changing the state back to ‘production’.

Accessing the data

Every experiment has a corresponding admin page from where you can access the research data:

http://frinexstaging.mpi.nl/[name of experiment]-admin (for the staging server)

http://frinexproduction.mpi.nl/[name of experiment]-admin (for the production server)

To access the data for staging experiments, you can log in using the name of the experiment as the user

name and ask for the password by emailing Peter Withers or Thijs Rinsma. This password is the same for

all staging experiments. To access the data for a production experiment, you need a unique password

for the experiment in question. You can get it by clicking the ‘access’ link in the ‘production admin’

column on the Build page. Provide your MPI login credentials and the user name and password will

appear on your screen.

Once logged in, you can access the data from multiple sources:

1. View the data directly from the browser using the links under 'View data' (click the link in the

upper right to show all information)

2. Download separate data files using ‘Download Zipped Data’ and ‘Download Zipped Audio’

<deployment publishDate="2021-15-05"

 expiryDate="2021-15-11"

 isWebApp="true"

 isDesktop="false"

 isAndroid="false"

 isiOS="false"

 state="production"/>

To Contents

23

Both sources will provide you with the following information:

View data / Zipped data file Information

Group Data Viewer / groupdata.csv Info about participant groups if applicable

Participant Listing / participants.csv Demographics and other metadata

Screen Events Viewer / screenviews.csv What screens were displayed in the experiment and
when Stimulus Response Viewer /

stimulusresponse.csv
Logs on stimuli presentation and participant input

Experiment Data Viewer / tagdata.csv Frinex version, browser and operating system used by
every participant

Experiment Data Pair Viewer /
tagpairdata.csv

Similar to stimulus responses .csv, but in a different form

Time Stamp Viewer / timestampdata.csv Data on timing of image presentation and participant
input, as well as occurrences of <logTimeStamp>

Audio Listing / audio download links Recorded audio files

All CSV files contain a unique user ID for each participant and the date and time on which the data was

logged (but date and time are not in participants.csv). Sometimes the data viewer shows a few extra

columns where they don’t exist in the corresponding CSV file (for example ‘ScreenName’).

The trial data are logged in stimulusresponse, tagpairdata and timestampdata. All of them contain

timing information of events, although in general timestampdata contains the most accurate time

values. The numbers are relative to the start of the presenter which the logged event is part of. Be

aware that all timing data reflect the internal registration of events. Although they give an indication of

the timing of events displayed on screen or through speaker, this should be measured with video

recording / optic sensor or microphone to know for sure.

Responses made with a <stimulusButton> and text presented with <stimulusLabel> are automatically
logged in timestampdata.csv as 'stimulusButton' and 'stimulusLabel_out'.

You can also log custom timestamps at any moment during the experiment:

<logTimeStamp eventTag="picture_presented"/>

eventTag will be logged in timestampdata.csv

<logTokenText type="stimulusTiming" headerKey="Picture" dataLogFormat="picture_presented"/>

type will be logged in column ‘EventTag’
headerKey will be logged in column ‘TagValue1’
dataLogFormat will be logged in column ‘TagValue2’

To Contents

24

PART II: ADVANCED TOPICS

In the first part of this manual we gave an overview of how to create simple experiments, from writing

the XML file and uploading it using Git, to putting the experiment in production and accessing the

experiment data. The second part of this manual aims to help you create experiments with more

complex features. It does not (yet) contain exercises.

6 | Recording audio

During an experiment you can record audio using the browser in which the participant is doing the

experiment. The following setup inside the <hasMoreStimulus> element is a minimal audio recording

example:

This will try to start the browser’s audio recorder, and if successful, records for 5 seconds. After that, it

stops the audio recorder with <stopAudioRecorder> and goes to the next stimulus. If anything goes

wrong with the audio recording, <onError> is triggered and an error message appears. It is probably

wise to add a button that allows the user to try again or do something else.

It could also be that the recording succeeds, but that the file cannot be uploaded to the server. In that

case, <mediaLoadFailed> will be triggered. If it is uploaded successfully, <mediaLoaded> will be

triggered.

During recording a red indicator in the top right corner of the screen is displayed. It will show the

message set in featureText. You can turn it into a running timer with featureText="00:00:00".

The default file format used to save the recording is .ogg. You can change this to .wav format if you

need to by adding the attribute recordingFormat="wav".

If you want to give feedback about the sound level during the recording, you can set levelIndicatorStyle

to a CSS style name; an empty "" will result in a very basic indicator. In order to position it, append a

region in the presenter with regionId="AudioRecorderWebLevelIndicator" and a value for styleName.

<startAudioRecorderWeb mediaId="audio_recording"

 featureText="Now recording"

 downloadPermittedWindowMs="0">

 <onSuccess>

 <pause msToNext="5000">

 <stopAudioRecorder/>

 <nextStimulus repeatIncorrect="false"/>

 </pause>

 </onSuccess>

 <onError>

 <htmlText featureText="Could not start the recorder"/>

 </onError>

 <mediaLoaded/>

 <mediaLoadFailed>

 <htmlText featureText="Failed to upload recording"/>

 </mediaLoadFailed>

 <mediaPlaybackStarted/>

 <mediaPlaybackComplete/>

</startAudioRecorderWeb>

To Contents

25

Playing back recorded audio

To play back the sound that was recorded, first set the allowable time window for playback using

downloadPermittedWindowMs. That is, after the audio is recorded, it is uploaded to the Frinex server.

In order to play it back, it must then be downloaded. The time window allowed for this should be

limited for security reasons. The window starts when the recording is uploaded. For really long audio

recordings (minutes) it is wise to make this window longer than for short ones (seconds), especially if

the file format is .wav (larger than .ogg so takes longer to download).

In order to trigger the playback of the recording, use the <playMedia> element. It will play the audio

that has a matching mediaId, as long as the time window set in downloadPermittedWindowMs has not

yet passed. If the playback fails then mediaLoadFailed will be triggered.

As an example, you could add <playMedia> in <onSuccess> to play back the recording right away using a

button:

<onSuccess>

 <pause msToNext="5000">

 <stopAudioRecorder/>

 <actionButton featureText="play">

 <playMedia mediaId="audio_recording"/>

 </actionButton>

 </pause>

 </onSuccess>

To Contents

26

7 | Formatting and layout

In Chapter 4 we covered the basics of formatting and layout of screen contents. To recap, there are two

ways: using predefined elements and using CSS styling. In this chapter we will cover these methods and

the use of regions in more detail.

More layout elements

• There are variants of button elements that will put the button at the bottom of the page:

<actionFooterButton>, <targetFooterButton> and <ratingFooterButton>

• <table>

A table lets you organize screen items into rows and columns:

Note that the first element in a table should always be a row; from there you can add more

columns, which can contain rows, etc. You can apply styles to the table as a whole and to

individual columns as well. These styles may or may not combine very well when used

simultaneously. Also, be aware that using different amounts of contents (some or a lot of text, a

small or a large picture) will cause the rows or columns that hold them to change in size

accordingly.

CSS styling

To use custom CSS styles you need to define them within the <scss> element as shown below. There are

plenty of resources online detailing which properties and values are available, see for example

https://developer.mozilla.org/en-US/docs/Web/CSS/Reference

<table styleName="">

 <row>

 <column styleName="">

 <htmlText featureText="left column"/>

 </column>

 <column styleName="">

 <htmlText featureText="right column"/>

 </column>

 </row>

 </table>

.nameOfStyle {

 property1: value;

 property2: value;

 ...

}

https://developer.mozilla.org/en-US/docs/Web/CSS/Reference

To Contents

27

In-line CSS

Besides applying a style to an element, you can add styling directly in the featureText of <htmlText> and

<htmlTokenText>. Basically, this means adding HTML code to the featureText. This makes it easy to

change the color of some words in a text, for example, but adding an image is also possible. Here are

some examples:

<htmlText featureText="<center>This text is centered.</center>"/>

<htmlText featureText="This text is blue."/>

<htmlText featureText="<div></div>
"/>

We cannot use < and > inside featureText, because they are already used for the XML elements. Instead

we need to replace them with < and > (less than / greater than). We also need to use "

instead of double quotes (") for the same reason. So the first example becomes:

<htmlText featureText="<center>This text is centered.</center>"/>

To Contents

28

8 | Advanced Control

Tokens

In an XML definition you can reference the value of a metadata field and use it as part of attribute

values in other elements. Such a reference is called a ‘token’. Tokens either take the form of

::fieldname:: when referring to built-in metadata fields, or ::metadataField_fieldname:: when referring

to metadata fields you have defined in <metadata>. Appendix B details the available tokens, but here is

a simple use case:

Say you want to display how far into the experiment participants have progressed, based for example on

the trial number. For this you could use the element <progressIndicator>:

The attribute evaluateTokens needs a dynamic value that changes as a function of the trial number. For

this we use the token ::stimulusCode::, which refers to the value of the code attribute in <stimulus>

elements. The progress indicator interprets the value of evaluateTokens as a percentage. If we number

our trials using the code attribute, we can make the progress bar indicate the percentage of trials

finished, based on the total amount of trials N.

You can try out the progress indicator element in with_stimulus_example. Press any of the

percentage buttons to show the progress in the bars. The default is the upper most bar, but you can see

how to create the other styles in the XML of with_stimulus_example (search for “progressIndicator”

and then look up the used styleName in the <scss> section of the XML).

Randomization by Frinex

Besides enabling stimuli randomization by setting the randomize attribute of <loadStimulus> to “true”,

we can use the following attributes for more control over the randomization:

repeatAmount

How many times the (randomized) stimuli will be repeated after having been presented once.

repeatRandomWindow

This randomizes your stimuli in a moving window of the size that you indicate, after first applying the

repeat count. The moving window goes through your stimuli in steps of 1, and ranges from the current

stimulus up to the size you indicated. A number equal to the total number of stimuli will make it

randomize all items to any location.

It is possible to try out different combinations of these values in your experiment using the transition

table calculator. This provides information about the probability of adjacent stimuli and the like. Add

the following code to your experiment:

<progressIndicator evaluateTokens="(::stimulusCode:: / N) * 100">

 <onSuccess/>

 <onError/>

</progressIndicator>

https://frinexstaging.mpi.nl/with_stimulus_example/#progressIndicator_example
http://frinexbuild.mpi.nl/with_stimulus_example/with_stimulus_example.xml

To Contents

29

Then you can access it by appending ‘#about’ to the experiment URL, for example

https://frinexstaging.mpi.nl/my_experiment/#about

Using multiple stimulus lists

If you want to present different groups of participants with predefined lists of stimuli, there are two

ways. Both of them require a metadata field in <metadata> to store the list names. For example:

<field controlledMessage="." controlledRegex=".*" postName="stimulus_list"
registrationField="stimulusListID"/>

The first method builds on the random group selection method from Chapter 4, section Stimulus

Selection. Once you have that set up, add the attribute storageField to <randomGrouping> and give it

the same value as the postName of the metadata field above.

This allows you to select which list your participants will be presented with, either by setting it with

<setMetadataValue fieldName="stimulus_list"> or by adding a GET parameter in the link to the

experiment, for example:

https://frinexstaging.mpi.nl/my_experiment/?stimulusList=list2

The downside of this method is that your XML becomes very large if you have many trials and many

lists. It may even be impossible to build your experiment, as the maximum number of lines in XML is

somewhere in the range 5000 to 7000.

To avoid this downside, you can do some things differently:

• Use the <list> element in <randomGrouping> to define the order of stimuli in each list. You do

this by stringing together the identifiers of every <stimulus> in the desired order, like so:

<randomGrouping storageField="stimulusList">
 <list alias="list1">-trial1-trial2-trial3- ... -</list>
 <list alias="list2">-trial3-trial5-trial2- ... -</list>
 <list alias="list3">-trial7-trial2-trial9- ... -</list>
</randomGrouping>

• There is no need to add the list names to the <stimulus> tags attribute.

<presenter self="about" type="debug">

 <versionData/>

 <stimuliValidation/>

 </presenter>

https://frinexstaging.mpi.nl/my_experiment/?stimulusList=list2

To Contents

30

Triggering a block of elements

You can trigger a block of multiple elements, by first defining the block of elements inside

<triggerDefinition> and then using <triggerMatching> to trigger them:

By using <triggerMatching>, you make a trigger request and it takes the number of requests set in

<triggerDefinition> threshold to actually trigger the block of elements. By setting maximum higher than

1, you allow the block to be triggered more than once. Make sure the listenerId attributes of

<triggerDefinition> and <triggerMatching> correspond.

Setting metadata field values

You can set the value of a metadata field using below methods:

• <setMetadataValue fieldName="" dataLogFormat="">

Here, dataLogFormat is the desired value of the metadata field named in fieldName.

Optionally, you can use the attribute replacementRegex to change the value of the metadata

field using a regex. This is only useful if dataLogFormat contains a token.

• <setMetadataEvalTokens fieldName="" evaluateTokens="">

Here, the value of evaluateTokens is the desired value of the metadata field and it can contain

tokens. Use <onSuccess> to trigger elements when setting the value is successful and <onError>

when it is not.

• GET parameters: these are added to the URL of the experiment to set the value of a metadata

field at the start of the experiment. Use the postName of the <field> element to refer to the

metadata field:

frinexstaging.mpi.nl/name_of_experiment/?postName=some_value

<triggerDefinition listenerId="event" threshold="1" maximum="1">

 (block of elements)

</triggerDefinition>

...

<triggerMatching listenerId="event"/>

To Contents

31

Using conditionals

Some elements make it possible to trigger other elements depending on whether a certain condition is

met. For example:

A short explanation of some commonly used conditionals:

<currentStimulusHasTag tags="">

As the element’s name implies, it checks whether the current stimulus has one or more of the

tags specified in tags. Multiple tags need to be separated by spaces.

<hasMetadataValue fieldName="fieldName" matchingRegex="">

This checks whether the value of a metadata field matches the value in matchingRegex.

<matchOnEvalTokens evaluateTokens="" matchingRegex="">

This checks whether the value of evaluateTokens matches the value in matchingRegex.

Here, evaluateTokens can include tokens (see Appendix B).

<stimulusHasResponse groupId="" matchingRegex="">

With this element you can check whether any response (if groupId is empty) has been given to

the current stimulus, or (if groupId is given) whether a response has been given to a certain

stimulus group. If so, it checks whether this matches the value in matchingRegex.

Each of these requires the <conditionTrue> and <conditionFalse> elements. Note that

<matchOnEvalTokens> requires an additional <onError> element that triggers in case of an error in

evaluating the value of evaluateTokens. If there are no elements in <conditionTrue> or <conditionFalse>,

you can make them self-closing.

In combination with triggering blocks of elements conditionals can make creating complex setups more

manageable.

<hasMetadataValue fieldName="numberOfErrors" matchingRegex="4">

 <conditionTrue>

 <triggerMatching listenerId="triggerEndExperiment"/>

 </conditionTrue>

 <conditionFalse>

 <nextStimulus repeatIncorrect="false">

 </conditionFalse>

 </hasMetadataValue>

To Contents

32

9 | Creating questionnaires

For creating questionnaires you can of course use LimeSurvey or Qualtrics, but sometimes it makes

sense to create a questionnaire within Frinex.

Using <withStimuli>

Instead of presenting trials one after the other using <loadStimulus> and <hasMoreStimulus>, you can

present trials in vertical order on the page using <withStimuli>. This is useful for questionnaires, as it

makes for a relatively simple structure of the presenter. Below you see the basic structure of

<withStimuli>:

<withStimuli>

 <beforeStimulus> Elements triggered once before the first trial (will be shown at the top)

 <eachStimulus> Elements triggered for each trial

 <afterStimulus> Elements triggered once after the last trial (will be shown at the bottom)

 <randomGrouping> Works like in <loadStimulus>

 <stimuli> Works like in <loadStimulus>

</withStimuli>

Stimulus rating buttons

If you use <withStimuli> to present your stimuli, then instead of <ratingButton>, <ratingRadioButton>

and <ratingCheckbox> you need to use <stimulusRatingButton>, <stimulusRatingRadio> and

<stimulusRatingCheckbox>. These take their answer options from the ratingLabels attribute in each

trial’s <stimulus> element.

Moreover, adding an ordinary rating button will produce a rating button for each stimulus, but they will

not be linked to the separate stimuli in the way the stimulus rating buttons are. This means the

responses to them will not be registered in the database.

To use withStimuli together with a stimulus rating button in a questionnaire, we need to add a question

and a rating button for each stimulus to the basic structure. We also need to check the responses to

make sure participants actually checked the button.

To Contents

33

Example

If different questions have different response requirements, then simply add more

<addStimulusCodeResponseValidation> elements, each with a groupId that corresponds to the groupId

of the intended question(s). See Appendix A for examples of regular expressions to use as input

requirement in validationRegex.

<withStimuli randomise="false" maxStimuli="10">

 <beforeStimulus>

 <htmlText featureText="Question category XYZ"/>

 </beforeStimulus>

 <eachStimulus>

 <stimulusLabel/>

 <addPadding/>

 <stimulusRatingButton groupId="ratingResponse"/>

 <addStimulusCodeResponseValidation groupId="ratingResponse"

 validationRegex=".+"

 featureText="Please make a choice"/>

 </eachStimulus>

 <afterStimulus>

 <actionButton>

 <validateStimuliResponses>

 <conditionTrue>

 <gotoNextPresenter/>

 </conditionTrue>

 <conditionFalse/>

 </validateStimuliResponses>

 </actionButton>

 </afterStimulus>

 <randomGrouping/>

 <stimuli/>

</withStimuli>

<stimuli>

 <stimulus identifier="1" label="Question 1 here" ratingLabels="1,2,3,4,5" tags="main"/>

 <stimulus identifier="2" label="Question 2 here" ratingLabels="Never,Sometimes,Always" tags="main"/>

 <stimulus identifier="3" label="Question 3 here" ratingLabels="Yes,No" tags="main"/>

 <stimulus identifier="4" label="Question 4 here" ratingLabels="Yes,No" tags="main"/>

 </stimuli>

These group IDs

need to match!

Tells Frinex that the

stimulusRatingButton

requires at least one

character as a response

After pressing the button, this

checks whether the response

corresponds to validationRegex.

If it corresponds, go to the

next screen / part of the

experiment.

To Contents

34

The above method is most useful if many questions are of the same type. It is still useful if you have

several types of questions and multiple questions per type. Then you could organize <eachStimulus> like

this:

Here, <currentStimulusHasTag> is used to distinguish between different types of questions (one uses

radio buttons, another checkboxes and another push buttons). Make sure to add these distinguishing

tags to the tags attribute of each <stimulus> element in the main <stimuli> section of your experiment

file.

What if your questions are all of a different type? Then it is probably more practical to hard-code all

questions using <ratingButton>, <ratingRadioButton> and <ratingCheckbox> than to use a lot of

<currentStimulusHasTag> elements. If you have other stimuli besides those in your questionnaire in

your XML, make sure to set the maxStimuli attribute of <withStimuli> to “1” and define one <stimulus>

with a unique tag.

<eachStimulus>

 <stimulusLabel/>

 <addPadding/>

 <currentStimulusHasTag tags="Questions_123">

 <conditionTrue>

 <stimulusRatingRadio groupId="ratingResponse"/>

 </conditionTrue>

 <conditonFalse>

 <currentStimulusHasTag tags="Questions_456">

 <conditionTrue>

 <stimulusRatingCheckBox groupId="ratingResponse"/>

 </conditionTrue>

 <conditonFalse>

 <!-- all other questions -->

 <stimulusRatingButton groupId="ratingResponse"/>

 </conditonFalse>

 </currentStimulusHasTag>

 </conditonFalse>

 </currentStimulusHasTag>

 <addStimulusCodeResponseValidation groupId="ratingResponse"

 validationRegex=".+"

 featureText="Please make a choice"/>

</eachStimulus>

To Contents

35

Tables and withStimuli

If you want every question to be presented as part of a table, the <table> element comes before the

<withStimuli> element. Then, in <eachStimuli> you define the stimulus as for example a rating button

within a row. For example:

This will produce the stimulus label and some answer options to the right of it, for every stimulus.

<table>

 <withStimuli randomise="false" maxStimuli="10">

 <beforeStimulus/>

 <eachStimulus>

 <row>

 <column>

 <stimulusLabel/>

 </column>

 <column>

 <stimulusRatingButton/>

 </column>

 </row>

 </eachStimulus>

 <afterStimulus/>

 <randomGrouping/>

 <stimuli/>

 </withStimuli>

</table>

To Contents

36

Appendix A | Regular expressions

Below overview contains a small collection of common regular expressions that you can copy to your

XML and adapt to your own needs. For a more complete overview and interactive testing of regexes,

see for example regex101, RegExr or RegexPal (make sure to set the regex engine / flavor to Java or

Javascript).

Note that when setting <field> elements in <metadata>, the { and } in a regex should both be

surrounded by single quotes. So {1,3} becomes '{'1,3'}'. In all other places in the XML this is not

necessary.

Regular expression Matches with...
"Psycholinguistics" The exact character string “Psycholinguistics” (case sensitive)
"." Any single character
"[mpi]" A single character of m, p or i
"[^mpi]" Any single character except m, p or i
"[0-9]" A single number between 0 and 9
"[a-zA-Z]" A single character in the alphabetic range a to z or A to Z

".*" Any character string of any length (including zero length)
".+" Any character string of at least one character
".{3,}" Any character string of at least three characters
".{3,5}" Any character string of between 3 and 5 characters in length
"a{3,5}" A character string consisting of only a’s between 3 and 5 characters in

length

"never|sometimes|always" Either of the exact strings “never”, “sometimes” or “always”
"never|sometimes|" Either of the exact strings “never”, “sometimes” or “” (no value)
"[\\s\\S]{1,}" Any string of 1 or more characters, multi-line input allowed (for multi-

line input boxes)

https://www.regex101.com/
https://regexr.com/
https://www.regexpal.com/

To Contents

37

Appendix B | Tokens

Tokens allow you to refer to the values of metadata fields. These metadata fields can be built into Frinex

or they can be metadata fields you defined in the XML yourself.

The table below is an overview of the tokens in Frinex. Be aware that token names are case-sensitive, so

for example ::stimuluscode:: does not refer to the code attribute of a <stimulus> element, but

::stimulusCode:: does.

token Refers to Extra information

::stimulusCode:: <stimulus> code attribute

::stimulusCorrectResponses:: <stimulus> correctResponses
attribute

::stimulusId:: <stimulus> identifier attribute

::stimulusLabel:: <stimulus> label attribute

::stimulusPauseMs:: <stimulus> pauseMs attribute

::stimulusRatingLabels:: <stimulus> ratingLabels
attribute

Use ::stimulusRatingLabel_0:: for
the first rating label,
::stimulusRatingLabel_1:: for the
second rating label, and so on.

::stimulusTags:: <stimulus> tags attribute

::stimulusResponse:: Response to the current
stimulus

::stimulusResponse_(stimulusId)_(groupId):: 3 Response from a specific
stimulus and/or button
(including input boxes)

groupId corresponds to the
groupId attribute of a button or
input box element.

::completionCode:: Completion code

::currentDateDDMMYYYY:: 4 The current date in DDMMYYYY

::userId:: The Id of the current participant

::(listenerId of timer)::
::mediaLength_(mediaId)::

The current value of timer
Last known length in seconds of
media associated with
‘mediaId’

::metadataField_(postName of <field>
element)::

Value of any metadata field
defined in <metadata>

3 When using only groupId, the token becomes ::stimulusResponse__(groupId):: (mind the double underscore)
When using only stimulusId, it becomes ::stimulusResponse_(stimulusId)_:: (mind the trailing underscore)
4 Other date formats are allowed, for example DDMM, MMYYYY or YY.

To Contents

38

Elements that accept tokens

If an element has an evaluateTokens attribute, you can use a token in that attribute. Some other

elements have different attributes that also accept tokens:

Element Usage

<stimulusFreeText> Use tokens in validationRegex

<setMetadataValue> Use tokens in dataLogFormat

<triggerMatching> Use tokens in listenerId

<logTokenText> Use tokens in dataLogFormat

<stimulusHasResponse> Use tokens in groupId

<addStimulusCodeResponseValidation> Use tokens in groupId

<setStimulusCodeResponse> Use tokens in groupId and codeFormat

Some elements that don’t accept tokens have a token-enabled counterpart:

No token Token-enabled (link) Usage

<htmlText> <htmlTokenText> Use tokens in the featureText

<actionButton> <actionTokenButton> Use tokens in the featureText

<stimulusImage> <stimulusCodeImage>
<stimulusCodeImageButton>

Use tokens in codeFormat to specify the media filename.
Idem, but image is a button at the same time

<stimulusAudio> <stimulusCodeAudio> Use tokens in codeFormat to specify the media filename.

<stimulusVideo> <stimulusCodeVideo> Use tokens in codeFormat to specify the media filename.

<regionStyle> <regionCodeStyle> Use tokens in the styleName.

<pause> <evaluatePause> Use tokens in evaluateTokens.
Also allows to specify minimum and maximum values.
Requires <onSuccess> and <onError>.

Token methods

There are several token ‘methods’ that you can use within evaluateTokens attributes. They can be used

in a similar way to functions in programming languages: the name followed by one or more arguments

in parentheses. These arguments can contain tokens, which makes token methods very useful in

complex setups. Within a method’s parentheses, quotes should be either single straight quotes ('), or

escaped double quotes (").

Token method

addTime(time1, time2)

daysBetween(date1, date2)

getRandomItem('a,b,c,d')

length(text)

random(number)

replaceAll(text, to_replace, replace_with)

See the XML Usage page for

explanation and examples on these

token methods.

http://frinexbuild.mpi.nl/frinex.html#htmlTokenTextType
http://frinexbuild.mpi.nl/frinex.html#actionTokenButtonType
http://frinexbuild.mpi.nl/frinex.html#stimulusCodeImageType
http://frinexbuild.mpi.nl/frinex.html#stimulusCodeImageButtonType
http://frinexbuild.mpi.nl/frinex.html#stimulusCodeAudioType
http://frinexbuild.mpi.nl/frinex.html#stimulusCodeVideoType
http://frinexbuild.mpi.nl/frinex.html#regionCodeStyleType
http://frinexbuild.mpi.nl/stable.html#withinThresholdType

To Contents

39

Appendix C | Troubleshooting

This section is work-in-progress, but could be useful in the present state.

Error messages on the Frinex build page

Error messages about the contents of the XML file

 These can be resolved by changing your XML file.

The ‘XML Language Support’ extension by Red Hat provides tips about the correct use of XML and the

Frinex elements and attributes in Visual Studio Code / VSCodium. This works best if the

xsi:noNamespaceSchemaLocation attribute of the main <experiment> element is set to

‘http://frinexbuild.mpi.nl/version.xsd’, where version can be ‘stable’ , ‘beta’ or ‘alpha’.5

‘The processing instruction target matching "[xX][mM][lL]" is not allowed.’

 Make sure that the following is on the first (and not the second) line in the XML document:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

‘Open quote is expected for attribute "X" associated with an element type "Y".’

The XML should only contain straight quotes: ' or " (not ’, ` or “)

 You are likely to find the problematic quote in most editors by looking for a change in the syntax

highlighting that starts at a certain location, continuing until the end of the XML file.

‘404 Not Found’

‘ Whitelabel Error Page / This application has no explicit mapping for /error, so you are seeing this as a fallback.’

‘WARNING: An illegal reflective access operation has occurred’ (possibly including lines starting with ERROR)

The following cases can cause this error:

- <stimulusVideo> showControls or autoPlay attribute has empty value (="")

- <stimulusAudio> autoPlay attribute has empty value

-

‘The frinexVersion="beta" is too ambiguous for production deployments. Please specify the Frinex version for

example frinexVersion="1.7.XXXX-stable". You can find the version number on the initial page of the staging

version of your experiment FRINEX Version: 1.7.XXXX-stable.’

 Rebuild your experiment to staging, click ‘browse’ in the staging column to see the version number

5 Some older experiments use ‘frinex.xsd’, but this can give unsolvable errors in VSCode / VSCodium

To Contents

40

Unexpected behavior on the Frinex build page

The building of your experiment seems stuck / the Frinex build page won't load

 Contact Peter Withers (developer of Frinex)

If he is not available within a reasonable time, you can ask Gert-Jan de Bresser or Tobias van Valkenhoef

(system administrators)

